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We report phonon renormalization in bilayer graphene as a function of doping. The Raman G peak stiffens
and sharpens for both electron and hole doping as a result of the nonadiabatic Kohn anomaly at the � point.
The bilayer has two conduction and valence subbands, with splitting dependent on the interlayer coupling. This
gives a change of slope in the variation of G peak position with doping which allows a direct measurement of
the interlayer coupling strength.
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I. INTRODUCTION

Graphene is the latest carbon allotrope to be dis-
covered.1–5 Near-ballistic transport at room temperature and
high carrier mobilities2–8 make it a potential material for
nanoelectronics,9–11 especially for high-frequency applica-
tions. It is now possible to produce areas exceeding thou-
sands of square microns by means of micromechanical cleav-
age of graphite. An ongoing effort is being devoted to large
scale deposition and growth on different substrates of choice.

Unlike single layer graphene �SLG�, where electrons dis-
perse linearly as massless Dirac fermions,1–5 bilayer graph-
ene �BLG� has two conduction and valence bands, separated
by �1, the interlayer coupling.12,13 This was measured to be
�0.4 eV by angle-resolved photoelectron spectroscopy14

and �0.43 eV by cyclotron resonance experiment.15 A gap
between valence and conduction bands could be opened and
tuned by an external electric field,16,17 making BLG a
tunable-gap semiconductor.

Graphene can be identified in terms of number and orien-
tation of layers by means of inelastic and elastic light scat-
terings, such as Raman18 and Rayleigh spectroscopies.19,20

Raman spectroscopy also allows monitoring of doping, de-
fects, edges, strain, and chemical modifications.4,21–31 In-
deed, Raman spectroscopy is a fast and nondestructive char-
acterization method for carbons.32 They show common
features in the 800–2000 cm−1 region: the G and D peaks,
around 1580 and 1350 cm−1, respectively. The G peak cor-
responds to the E2g phonon at the Brillouin-zone center ���.
The D peak is due to the breathing modes of sp2 atoms and
requires a defect for its activation.33–35 The most prominent
feature in SLG is the second order of the D peak: the 2D
peak.18 This lies at �2690 cm−1 and involves phonons at
K+�q.18,24 �q depends on the excitation energy, due to
double resonance, and the linear dispersion of the phonons
around K.18,35,36 2D is a single peak in SLG, whereas it splits
in four in BLG, reflecting the evolution of the band
structure.18 The 2D peak is always seen, even when no D
peak is present, since no defects are required for overtone
activation.

In SLG, the effects of back and top gatings on G-peak
position �Pos�G�� and full width at half maximum
�FWHM�G�� were reported in Refs 21, 22, and 25. Pos�G�
increases and FWHM�G� decreases for both electron and

hole doping. The G peak stiffening is due to the nonadiabatic
removal of the Kohn anomaly at �.21,37 FWHM�G� sharpen-
ing is due to blockage of phonon decay into electron-hole
pairs due to the Pauli exclusion principle, when the electron-
hole gap is higher than the phonon energy,21,38 and saturates
for a Fermi shift bigger than half phonon energy.21,22,38 A
similar behavior is observed for the LO-G− peak in metallic
nanotubes39 for the same reasons. The conceptually different
BLG band structure is expected to renormalize the phonon
response to doping differently from SLG.13,40 Here we prove
this by investigating the effect of doping on the BLG G and
2D peaks. The G peak of doped BLG was recently
investigated,41,42 but reproduced that of SLG we previously
measured,21,25 due to the very low doping range ��5
�1012 cm−2�, not enough to cross the second BLG subband.
Here we reach much higher values ��5�1013 cm−2�, prob-
ing the further renormalization resulting from crossing to the
second BLG subband.

II. BILAYER GRAPHENE

The lattice structure of bilayer graphene is shown in Fig.
1�a�, where the bottom and top layers are represented by a
dashed red line and solid blue line, respectively. The indexes
1 and 2 in Fig. 1�a� label the sublattices of the bottom and
top layers, respectively.43–46 As seen from Fig. 1�a�, the A2
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FIG. 1. �Color online� �a� Top view of a bilayer graphene. Red
dotted line represents the bottom layer, while the solid blue line the
top layer. A1 and B1 are the sublattices of the bottom layer, and A2

and B2 those of the top layer. �b� Energy dispersion of a bilayer
graphene. �1 is the energy separation between the two subbands.
s= +1 for conduction band and s=−1 for valence band.
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sublattice of the top layer is exactly on top of the sublattice
B1 of the bottom layer. In the tight-binding approximation,
the in-plane nearest-neighbor hopping energy �A1-B1 or
A2-B2� is called �0, whereas the interlayer hopping energy
�A2-B1� is �1. These are the most relevant energy scales of a
bilayer graphene. Here, we neglect in-plane next-nearest-
neighbor hopping and interlayer second-nearest-neighbor
hopping �3 �B2-A1� and �4 �A2-A1 or B2-B1�. Under these
approximations, the Hamiltonian of a bilayer graphene near
the K point can be written as43–46

H =�
0 �k 0 0

�k 0 �1 0

0 �1 0 �k

0 0 �k 0
� , �1�

where �=
�3
2 �0a and a is the lattice parameter. The eigenval-

ues of this Hamiltonian are

�sj�k� = s	
�
�1

2
�2

+ ��0k�2��− 1� j �1

2
� , �2�

where s is a band index: +1 for conduction band and −1 for
valence band. j is the subband index, whose values are 1 and
2, as shown in Fig. 1�b�. This also plots the energy dispersion
of a bilayer graphene, where �1 �Refs. 12, 13, and 43–46�
measures the energy separation between the two subbands.
The density of states �DOS� is calculated using Eq. �2� and is
given by

D��� =
4

2��2
� +
�1

2
�, for � � �1

D��� =
8�

2��2 , for � 	 �1. �3�

In comparison, single layer graphene has linear energy dis-
persion �s�k�=s��k� and D���= 4�

2��2 .

III. EXPERIMENTAL

A. Electrochemical top gating

We recently demonstrated a SLG top gated by polymer
electrolyte25 able to span a large doping range—up to �5
�1013 cm−2. This is possible because the nanometer-thick
Debye layer25,47,48 gives a much higher gate capacitance
compared to the usual 300 nm SiO2 back gate.5 We apply
here this approach to BLG. Figure 2 shows the scheme of
our experiment. A sample is produced by micromechanical
cleavage of graphite. This consists of a SLG extending to a
BLG, as proven by the characteristic SLG and BLG 2D
peaks in the inset of Fig. 2.18 An Au electrode is then depos-
ited by photolithography covering both SLG and BLG �Fig.
2�. Top gating is achieved by using a solid polymer
electrolyte25 consisting of LiClO4 and polyethylene oxide
�PEO� in the ratio 0.12:1. The gate voltage is applied by
placing a platinum electrode in the polymer layer. Note that
the particular shape of our sample, consisting of a BLG, with
a protruding SLG, ensures the top gate to be effectively ap-

plied to both layers. Measurements are done with a WITEC
confocal �X50 objective� spectrometer with 600 lines/mm
grating, 514.5 nm excitation, and at �1 mW to avoid heat-
ing. For a given top gate voltage, VTG, spectra are recorded
after 10 min. Figures 3�a� and 3�b� plot the spectra as a
function of VTG. We use Voigt functions to fit the G peak in
both SLG and BLG. The SLG 2D band is fitted to one
Lorentzian. The BLG 2D band is fitted to four Lorentzians
2D1A, 2D1B, 2D2A, and 2D2B as in Ref. 18 �Fig. 2�. As pre-
viously discussed, two of these, 2D1A and 2D2A, are much
stronger.18 Thus, we focus on these. We just note that the
relative positions of the four subbands could slightly change
with gating if the relative position of the subbands is modi-
fied.

B. Conversion of gate voltage into Fermi-level shift

To get a quantitative understanding, it is necessary to con-
vert VTG into a Fermi level �EF� shift. In general, the appli-
cation of a gate voltage �VG� creates an electrostatic potential
difference 
 between the graphene and the gate electrode
and a EF shift as a result of addition of charge carriers.
Therefore, VG=

EF

e +
, where 
 and EF /e are determined by
the geometrical capacitance �CG� and the quantum capaci-
tance �CQ� of graphene, respectively. The two capacitors are
in series, as in Fig. 4�a�. Figure 4�b� depicts schematically
the electrostatic voltage drops in our top gated experiment
containing both SLG and BLG.

In a top gate experiment VTG is applied between the gate
and source. Note that in electrochemical top gating, the volt-
age drops across the Debye layer, while the voltage drops
across the SiO2 interface in case of back gating. �SLG is the
electrostatic voltage drop between the Debye layer and the
SLG surface. Similarly, �BLG is the voltage drop between the
Debye layer and the BLG surface. For a bilayer there will be
another voltage drop ��V� between the two carbon layers due
to the external electric field created by the gate electrode.
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FIG. 2. �Color online� Experimental setup. The black dotted box
on SiO2 indicates the polymer electrolyte �PEO+LiClO4�. Left in-
set shows a scanning electron microscope image of the SLG and
BLG. Scale bar: 4 
m. Right inset, comparison of the 2D Raman
band for our SLG and BLG.
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Here, we assume equal charge density in both layers. Thus,
the total electrostatic voltage drop in BLG is �T

BLG=�BLG

+�V. �V would move the relative position of the conduction
and valence band in BLG.17 In our experimental geometry
�Fig. 2� once the equilibrium is reached, both SLG and BLG
will have the same chemical potential. Therefore, eVTG
=e�SLG+EF

SLG=e�T
BLG+EF

BLG, where EF
SLG and EF

BLG are the
Fermi energy shifts in SLG and BLG, respectively. In our
calculation we neglect the term �V, since, for a given charge
density, the value of �V is always smaller compared to EF

BLG

and �BLG.16,17,49 Thus

eVTG = e�SLG + EF
SLG 
 e�BLG + EF

BLG. �4�

The electrostatic potential 
= ne
CTG

, where n is the carrier con-
centration and is calculated using the relation n=�0

�FD���d�.
For SLG, nSLG=
EF

2 , where 
=
gsgv

4��2 = 1
���vF�2 , gs=gv=2 are

spin and valley degeneracies, and vF is the Fermi velocity.
Thus for SLG

eVTG = �EF
2 + EF. �5�

Similarly, for BLG13,50,51

nBLG = 
��1EF + EF
2�, for EF � �1,

nBLG = 2
EF
2 , for EF 	 �1. �6�

Thus for BLG

eVTG = �EF
2 + �1 + ��1�EF, for EF � �1,

eVTG = 2�EF
2 + EF, for EF 	 �1, �7�

where �= e2

�CTG��vF�2 . We take39 CTG=2.2�10−6 F cm−2 and
�1=0.39 eV constant with doping �since its variation for n
up to �1013 cm−2 is �5% �Refs. 14 and 16��. Using Eqs. �5�
and �7� we plot the Fermi energy shift for SLG and BLG as
a function of gate voltage in Fig. 5.

IV. RESULTS

The dotted lines in Fig. 6 are the experimental Pos�G�,
FWHM�G� as a function of EF. In SLG, Pos�G� does not
increase up to EF�0.1 eV ����0 /2�, where �0 is the fre-
quency of the E2g phonon in the undoped case
���0 / �2��c�=Pos�G0�, with c the speed of light�, and then

FIG. 3. �Color online� Raman
spectra of �a� SLG; �b� BLG at
several VTG. Lines are the fits to
the experimental data.
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FIG. 4. �Color online� �a� Geometrical capacitance and quantum
capacitance are in series with VG. �b� VTG is the voltage applied
between the gate and source. � is the electrostatic potential drop
and EF is the Fermi energy shift. �V is the voltage drop between the
BLG layers.

FIG. 5. Fermi energy shift as a function of VTG. Dashed line:
SLG; solid line: BLG.
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increases with EF. Figures 6�b� and 6�d� indicate that in SLG
and BLG, FWHM�G� decreases for both electron and hole
doping, as expected21 since phonons decay into real electron-
hole pairs when EF���0 /2. Figure 6�c� plots Pos�G� of
BLG. We find that �i� Pos�G� does not increase until EF
�0.1 eV ����0 /2�. �ii� Between 0.1 and 0.4 eV the BLG
slope R= dPos�G�

dEF
is smaller than the SLG one. �iii� A kink is

observed in Fig. 6�c� at EF�0.4 eV. �iv� For EF	0.4 eV
the slope is larger than in SLG. �v� The kink position does
not significantly depend on �1 used to convert VTG in EF
�e.g., �66% change in �1 modifies EF by �6%�.

V. DISCUSSION

These trends can be explained by considering the effects
of doping on the phonons: �i� a change of the equilibrium
lattice parameter with a consequent “static” stiffening/
softening, �Pos�G�st; �ii� the onset of “dynamic” effects21,37

beyond the adiabatic Born-Oppenheimer approximation that
modify the phonon dispersion close to the Kohn anomalies,
�Pos�G�dyn. Thus, the total phonon renormalization can be
written as21,37

Pos�GEF
� − Pos�G0� = �Pos�G� = �Pos�G�st + �Pos�G�dyn.

�8�

For SLG, we get �Pos�G�st by converting EF into the corre-
sponding electron density nSLG and37,52

�Pos�G�st = − 2.13n − 0.0360n2 − 0.00329n3 − 0.226�n�3/2,

�9�

where n, in units of 1013 cm−2, is positive and negative for
electron and hole doping, respectively. For BLG, we assume
nBLG equally distributed on the two layers, each behaving as

a SLG with an electron concentration nBLG /2, and use the
above relation to compute �Pos�G�st.

�Pos�G�dyn is calculated from the phonon self-energy53

�,

��Pos�G�dyn = Re���EF� − ��EF = 0�� . �10�

The electron-phonon coupling �EPC� contribution to
FWHM�G� is given by53–55

FWHM�G�EPC = 2 Im���EF�� . �11�

The self-energy for the E2g mode at � in SLG can be written
as21,37,57

��EF�SLG = ���
−�

� f��� − f�− ��
2� + ��0 + i�

���d� , �12�

while for BLG it is given by13

��EF�BLG = ���
0

�

�2kdk�
s,s�

�
j,j�


 j j�
+

�
�f��sjk� − f��s�j�k����sjk − �s�j�k�

��sjk − �s�j�k�2 − ��� + i��2 , �13�

where ��=
�AucEPC���2

�M�0��vF�2 , Auc=5.24 Å2 is the graphene unit-cell

area, M is the carbon atom mass, f���=1 / �exp�
�−EF

kBT �+1� is
the Fermi-Dirac distribution, � is a broadening factor ac-
counting for charge inhomogeneity, EPC��� is the electron-
phonon coupling,58 s ,s� are the band indices, and j , j� are the
subband indices. 
 j j�

+ weighs the EPC contribution for tran-
sitions between different subbands in BLG. The values of

 j j�

+ are given in Ref. 13 as


11 = 
22 = 0.5
��k�2

��1/2�2 + ��k�2 ,

FIG. 6. �Color online� Pos�G�
for �a� SLG; �c� BLG as a func-
tion of Fermi energy. FWHM�G�
of �b� SLG; �d� BLG as a function
of Fermi energy. Solid lines: theo-
retical predictions.
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12 = 
21 = 0.5
��1/2�2

��1/2�2 + ��k�2 . �14�

By using Eqs. �12� and �13� in Eqs. �10� and �11�, we get
�Pos�G�dyn and FWHM�G�EPC for SLG and BLG.

To compare Eqs. �10� and �11� to the experimental data,
we use ��=4.4�10−3 �obtained from the DFT values of
EPC��� �45.6 �eV�2 /Å2� and vF �Refs. 21 and 36��, the ex-
perimental ��0 for SLG and BLG, and T=300 K. � is fitted
from the experimental FWHM�G� to FWHM�G�
=FWHM�G�EPC+FWHM�G�0, with FWHM�G�0 a constant
accounting for non-EPC effects �e.g., resolution and anhar-
monicity�. For SLG �BLG� we get �=0.13 eV �0.03 eV� and
FWHM�G�0=4.3 cm−1 �5.1 cm−1�. These � values are then
used to compute Pos�G�. Note that the relation between n
and EF implies that charge inhomogeneity causes different
EF broadening in SLG and BLG �e.g., �n�1012 cm−2 would
give 0.13 and 0.03 eV in SLG and BLG, respectively�.

The solid lines in Fig. 6 are the theoretical Pos�G� and
FWHM�G� at 300 K. The experimental and theoretical
FWHM�G� are in excellent agreement, as expected since the
latter was fitted to the former. The theoretical Pos�G� cap-
tures the main experimental features. In particular, the flat
dependence for �Ef��0.1 eV in both SLG and BLG and the
kink at �0.4 eV in BLG. This kink is the most striking
difference between SLG and BLG. It is the signature of the
second subband filling in BLG.

Indeed, a shift of EF, by acting on f��� in Eq. �13�, modi-
fies the type and number of transitions contributing to �. The
only transitions giving a positive contribution to � are those
for which ��s,j,k−�s�,j�,k����0, i.e., a subset of those between
�s=−1; j=1� and �s=1; j=1� �interband transitions, solid
blue �dark gray� lines in Fig. 7�. Note that the numerator in
Eq. �13� gives a negative value. Interband transitions with
��s,j,k−�s�,j�,k�	��0 �solid red �light gray� lines in Fig. 7� and
all intraband �between �s= �1; j=1� and �s= �1, j=2�,
dashed red �light gray� lines in Fig. 7� contribute to � as
negative terms. It is convenient to distinguish three different
cases: �I� �EF����0, �II� ��0� �EF���1, and �III� �EF�	�1.
For simplicity let us assume EF	0 �the same applies for
EF�0�. In case �I� the positive contributions from interband

transitions are suppressed and new negative intraband tran-
sitions are created. This results in strong phonon softening at
low temperatures.41 At T=300 K, these effects are blurred
by the fractionary occupation of the electronic states, result-
ing in an almost doping independent phonon energy �see Fig.
6�c��. In case �II�, a shift of EF suppresses negative interband
contributions and creates new negative intraband transitions.
By counting their number and relative weight �given by
� j j� / ��s,j,k−�s�,j�,k��, one can show that interband transitions
out-weight intraband ones, resulting in phonon hardening.
Case �III� is similar to �II�, with the difference that the sec-
ond subband filling suppresses negative intraband transitions
at k�K, further enhancing the phonon hardening. Thus, the
kink in Fig. 6 is a direct measurement of the interlayer cou-
pling strength from Raman spectroscopy.

VI. INTENSITY RATIO

In SLG the intensity ratio of the 2D and G peaks,
I�2D� / I�G� has a strong dependence on doping.25 Figure 8�a�
plots I�2D� / I�G� as a function of doping. For BLG we take
the highest among 2D1A and 2D2A. The SLG dependence
reproduces our previous results.25 However, we find an al-
most constant ratio in BLG. Figure 8�b� plots the doping
dependence of Pos�2D� in SLG, and Pos�2D1A�, Pos�2D2A�
in BLG. To a first approximation, this is governed by lattice
relaxation, which explains the overall stiffening for hole dop-
ing and softening for electron doping.25 A quantitative under-
standing requires one to consider both EPC and electron-
electron interactions.59 We also note that the shape of the 2D
peak changes with doping in BLG. This is due to the relative
motion of the four subbands as a result of the relative shift of
the conduction and valence bands in BLG when applying a
top gate.

FIG. 7. �Color online� Phonon renormalization for BLG: �i�
EF���0, �II� ��0�EF��1, �III� EF	�1. Blue �dark gray� and
red �light gray� arrows correspond, respectively, to positive and
negative contributions to �. Solid and dashed arrows correspond to
interband and intraband processes, respectively.

FIG. 8. �a� Ratio of 2D and G peaks intensities for SLG �solid
circles� and BLG �open circles� as a function of electron concentra-
tion. �b� Position of 2D for SLG �solid circles� and 2D main com-
ponents for BLG �open circles� as a function of electron
concentration.
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VII. CONCLUSIONS

We have simultaneously measured the behavior of optical
phonons in single layer and bilayer graphene as a function of
doping. In the latter, the G peak renormalizes as the Fermi
energy moves from the first to the second subband, allowing
a direct measurement of �1�0.4 eV.
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